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The Computing Continuum

Computing fabric composed of all current computational tiers.

A seamless integration of
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loT domain —>

the computing infrastructure.

Leverages the best of each tier.
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Mobile
Resources constraint
User/Service controlled

Low latency to end device
Highly distributed
Opportunistic

Autonomous vehicles
Smart cities
Resources management
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Edge domain—— >

Near communication stations
Telecom controlled
Cluster level computation

Computing-continuUum —— - memom >

Fog domain ——>»
<«— HPCs & QCs ——>

<«— Cloud domain ——>»
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High latency from end devices

High computational and storage capacity
Unlimitted & homogeneous resources
Cloud provider controlled

Very High computational capacity
High latency & on-demand computing

Today we have a centralized and limited visibility over the system performance, quality of service (QoS),

and Quality of data.

2




The Computing Continuum

.- Service E~.,'

Multi-proprietary: Shared infrastructure ownership

System issues propagate

Service B

Each stakeholder has: Service A
- Own global interest
- Local requirements of its infrastructure.

We need tools to understand the relationship between each SLO (requirement) and how propagation
unfolds.




The Computing Continuum

Geographically distributed

Challenges deployment and service adaptation

Service A

Centralized governance falls short
(intensified by stricter requirements)

Tailored runtime adaptations (Service + HW)

We need decentralized governance (intelligence), which considers local characteristics of the service
and the host.




Governance (Intelligence) in Continuum Computing

Reactive vs Predictive Control

e Distributed apps span sensors, edge, 1o
fog, and cloud.

o
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* Reactive, centralized management
often fails.
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Reactive (lagging)
Predictive (aligned)

System Response
=
.

* Non-stationarity breaks SLO
compliance.

o
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* Need predictive regulation over ul
reactive. 00 02 04 06 08 10

Perturbation




Biological Lens: Predictive Regulation

Organisms regulate by anticipating changes.

Homeostasis = reactive; Allostasis = predictive.

Free Energy Principle: minimize prediction error.

Analogy: components should anticipate loads.



Physics Lens: Fluctuation—Dissipation Theory (FDT)

FDT links fluctuations to responses.

Departures signal nonequilibrium dynamics.

In computing: compare expected vs observed
responses.

Alignment = predictive equilibrium.
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Predictive Equilibrium Defined

* Alignment between predicted and observed outcomes.
* Active property: sustained by adaptation.
 Combines dynamic balance, reconfiguration, predictive consistency.

 Basis for antifragility.



Mathematical Foundations: Bayes’ Theorem

Bayes’ rule updates beliefs given new observations.

plo]s) p(s)
p(o)

Prior p(s): belief before seeing data. p(s‘o) =

Likelihood p(o|s): how observations arise from states.
Posterior = Likelihood X Prior / Evidence

Evidence p(o): normalizing constant.

Posterior p(s|o): updated belief after observation.



Bayes’ Theorem Example: Rain and Wet Grass

Prior: P(Rain) = 0.3 (30% chance of rain).

Likelihood: P(Wet|Rain) = 0.9 (grass usually wet if it rains).
P(Wet|Rain) P(Rain)

P(Rain|Wet) = Pvel)

Alternative: P(Wet|-Rain) = 0.1 (sprinkler can also make
grass wet).
Posterior = Likelihood x Prior / Evidence

Observation: Grass is wet - update belief about rain.

Posterior: P(Rain|Wet) = 0.64 (now more likely it rained).
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Variational Free Energy (VFE)

* Measures how well an approximate posterior Q(s) matches the true posterior.
* Minimizing F = maximizing model evidence (probability of data under model).
* Balances Accuracy (fit to data) and Complexity (change in beliefs).

* Tractable alternative to exact Bayesian inference.

F=Dy[Q(s)|P(s|o)] = InP{o]
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Expected Free Energy (EFE)

Extends free energy to future outcomes.
* Evaluates policies r: sequences of actions.

e Captures both pragmatic value (rewards) and epistemic value (information gain).

* Provides solution to explore—exploit dilemma.

G(r) = EolInQ(s|m) = InPlo, |m)]
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Kullback—Leibler (KL) Divergence

Measures dissimilarity between two probability distributions.

* D=0 when Q (posterior) and P (prior) match perfectly; larger values mean greater
divergence.

* |n Active Inference: diagnostic of model-world mismatch.

e Used as both early warning and learning signal.

Dl QU[PUA] = 200 Inge
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KL Divergence Example

Suppose Expected distribution = [0.2, 0.8].
Observed distribution = [0.5, 0.5].

KL divergence quantifies the mismatch.

Here, D = 0.19, indicating nontrivial divergence.
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KL Divergence as Diagnhostic Tool

Distance between expected and observed
behavior.

Localizes failure causes: rewiring, coupling shifts,
noise.

Early-warning signal for model revision.

Doubles as learning signal.
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Antifragility in Distributed Systems

e Systems improve because of stress, not Antifragility Feedback Loop
despite it. [
* Perturbations expose mismatches - A

learning opportunity.

* BNs + KL provide learning gradient.

A\

Improved Stability < Model Update

e Equilibrium supplies safety rails.




Architecture: Predictive Equilibrium in Action

Local BNs at edge nodes predict responses.

Fog nodes run perturbation campaigns and compute divergence.

Cloud meta-controller aggregates signals.

Balances exploration vs exploitation.
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The human body is comprised of a series of complex systems, including:

-------- » Skeletal System
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Human Ecosystem

{ NSEREE » Nervous System

~—3 |nfrastructure Systems

@{i----» Cardiovascular System

————3 Regulation Systems
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DeepSLOs

{ YRERRE » Nervous System e | nfrastructure Systemsé Collaborative Learning

Representation Learning

:j.l‘ » Lymphatic System
\ ~mmmep  Regulation Systems e——»  zero Trust

""*-..» Endocrine System

®  Part of the immune system

®  Protects your body against foreign invaders
®  Control and coordinate your body's metabolism

® Response to injury, stress, and mood

Human Ecosystem 20



in DCCS

Human body self-regulates:

® Temperature

® Blood pressure
Nervous system O

Human body self-heals

Humans also learn how to maintain her/his
needs satisfied.

Human Ecosystem 21



Human Ecosystem

Nervous system

in DCCS

Overall state - Top-bottom sensing.

From feeling good-bad to actual problem.

We also need this feature for DCCS due to
their scale and interconnections.
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Elasticity (Resilience)

(Physics) The property of returning to an initial form or state
following deformation

stretch when a force stresses them

e.g., acquire new resources, reduce quality

shrink when the stress is removed

e.g., release resources, increase quality _\%



Elasticity > Scalability

.
Resource elasticity
Software / human-based
i e, Computing elements,
ww® multiple clouds {'3‘1

: Quality elasticity
'~ Non-functional parameters e.g.,
performance, quality of data,
service availability, human
trust

]

3"\ Costs & Benefit elasticity Elasticity space

\./  rewards, incentives

Dustdar S., Guo Y., Satzger B., Truong H. (2012) Principles of Elastic Processes, IEEE Internet Computing, Volume: 16, Issue: 6, Nov.-Dec. 2012
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http://www.infosys.tuwien.ac.at/Staff/sd/papers/Zeitschriftenartikel%20PrinciplesOfElasticProcesses%20SD.pdf
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6355499

High-level state

Resources, Quality, Cost

Cartesian Blanket

Elastic space for computing-
continuum systems

e Highest-level description of system state from Cloud
computing/elasticity work [1].

e DCCS have many different stakeholders with different interests, RQC can
frame a common language.

Resources

Operational equilibrium

e Defined as an operational mode of the application, from the highest
level state.

® Any system can have several operational equilibria, leading to different
configurations of the underlying infrastructure

[1] S. Dustdar, Y. Guo, B. Satzger, and H. L. Truong, “Principles of elastic processes,” IEEE Internet Computing, vol. 15, no. 5, pp. 66—71, Sep. 2011, doi: 10.1109/MIC.2011.121.
25
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The Cartesian Blanket

Adapting elasticity in the continuum

* System control based SLOs (Service Level Objectives) Cartesian Blanket

A Elastic space for computing-
continuum systems

* SLOs are represented as thresholds on the Cartesian R <
space ~

* The system space is delimited within an hexahedron. R»
* There is minimum and maximum value for each variable




The Cartesian Blanket

Adapting elasticity in the continuum

. . . Cartesian Blanket
* The space is constraint to the actual infrastructure

.. A Elastic space for computing-
CharaCtEHSthS; not homOgenOUS. continuum systems
* The infrastructure is represented as points, not R R
unlimited. ¢« e
................ .
* The only valid infrastructure is the one inside the

hexahedron. Rumin




The Cartesian Blanket

Adapting elasticity in the continuum

* The system space possible configurations can be
visualized as a stretched blanket over the
infrastructure points.

e Assuming linear interpolation on the space between the
infrastructure components.

* Now we have the system represented, but

How can this representation help on the design and

management of the distributed computing continuum

systems?

Rmax
Resources

Rmir1
Qmin

Cartesian Blanket

Elastic space for computing-

continuum systems

@
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Markov Blanket

The Markov Blanket of a random variable is the subset of nodes that provide enough
information to statistically infer its value. Concept from Judea Pearl [1].

In a Bayesian Network, the Markov Blanket of a node
(N) is composed of the parents (P), the children (C) and
the co-parents of the children (S).

A tool for causal filtering.

[1] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc. 29



Markov Blanket (MB)

Interactions between systems (e.g., human in
world) can be expressed through MBs — fulfill
Markov property; allow modeling reactive
behavioral models for elasticity

Creates formal boundary between a system
and external states — limits scope of variables
that determine internal state; discard
remaining information to reduce dimension

Provides clear interfaces for sensory- and
action states; policy (e.g., scaling) as a mapping
between these states

Leaming framework

Specified by the application requirements Requires leaming

Markov Blanket

<
-4

\

Computing-continuum resources

/

Causality relations

Set of metrics
Set of actions

REA
am

daptation capabilitie

\

4

Computing-continuum resources

/

Temporal dimension

Configuration 1 B Configuration 2

Behavioral Markov blanket of a system [4]

OO T
_______ & AL
Markov Blanket

R e P . y
L e Action State A e

Action-perception cycle between multiple entities [5]

[4] Dustdar, Casamayor Pujol, and Dustdar; On Distributed Computing Continuum Systems (2023)

[5] Sedlak, Casamayor Pujol, Donta, and Dustdar; Markov Blanket Composition of SLOs (2024)
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Causal Inference

> Discover & leverage causal relationships.
> 3 Rungs on the ladder of causation. [2]

- Observational

- Interventional

- Counterfactual

> Explainability capacity

[2] J. Pearl and D. Mackenzie (2018), The Book of Why: The New Science of Cause and Effect. USA: Basic Books, Inc., 31



Service Level Objectives

Service Level Objectives (SLOs) specify

requirements that must be ensured throughout | Energy |
operation (e.g., latency < t). Focused mainly on I L
performance, narrows the scope [ Delay |

Elasticity Strategies scale a system according to
current demand; e.g., if performance is
insufficient, allocate more resources, change
qguality, adapt costs. However, what if this does
not fulfill SLOs?

h
Resources

Capacity

Demand

Edge comPUting a”OWS tO decrease IatenCieS for Elasticity allocates the right amount of regrjrces [2]
loT applications; can use load-balancing

mechanisms to direct load, but only scale

resources up to a local limited

[2] Ricciardi et al., Saving Energy in Data Center Infrastructures (2011)



DeepSLOs

> A construct we envision relating SLOs
> Provides a complete view of DCC system

> Allows aggregation towards higher abstractions @

33




Problem Summary

Intricacy of requirements
Large-scale distributed systems are complex and their

correct function requires more flexible ways to ensure
SLOs

—> Composable behavioral models

Resource limitations on Edge

Resources are scarce at the Edge and it might often
not be possible to offload, scale vertically, or
horizontally

—> Multi-dimensional elasticity strategies

ML algorithms as blackbox

Low trust in ML-based orchestration mechanisms (incl.

autoscalers) that cannot be verified empirically
— Causality-based service adaptation

{ \\, / \\\
| Throughput | [ Device “‘) -
\ / \ Task | // e
\, P / / \
i \4\‘ N[ o
l AD?t?t \ Capacity |
ctivity ) /
Bandwidth Faa N
Latency /
Mass
Relocation Relocale ;“‘ Data | [ Shrink |
Costs ) Data Gravnty Data |
\ /
Data [ Scale Resource Scale Quality
Sovereignty) | Resources | Availability Quality | Measures

Edge Resources

Scale
Resources Service Level Objectives

h provide i Latency [
’ metrics = Energy E

ProcessmgSerwce L.

Latency E . IScale
E| i

' % Quality Quality
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SLOs and Behavioral Models

MB: Expresses how to evaluate a composite SLO
and how to react according to the current device
context

Behavioral model
Internal state (®) evaluates objectives and how
these relate to external sensory inputs (e);

can interact with the world through action, i.e.,
elasticity strategies (e),

which are influenced by contextual factors (¢)

[3] Sedlak et al., Controlling Data Gravity and Data Friction: From Metrics to Multidimensional Elasticity Strategies (2023)

/// \ T T
'/ \I‘v / \
| Throughput | l'( Device "'I -
\ // \ Task / //" -
N .
O /,/\\‘ /\\\\‘ P // l',. Total \Y'
l D?t? \ Capacity |
Activity
Bandwidth —
Latency Daia
\ j Mass
Relocation "Relocate | /"' Data ‘v [ Shnnk
Costs ._)\ Data | Grawty — | Data
\ \ /
Data | Scale ! Resource Scale | Quality
Sovereignty | Resources | Availability | | Quality | Measures

Example of a behavioral model for data gravity [3]
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DeepSLOs

DeepSLOs as a hierarchically structured set of SLOs that
relate causally and purposefully, holistically integrating all
system needs.

1. Asingle DeepSLO can be in charge of an autonomic
component of the system, providing ad-hoc
objectives and elastic strategies at different
abstraction levels, and mapping into the

SLO 2

SLO 1

Elastic strategy 6

infrastructure.

Abstraction

2.  Horizontal relations are within the same level of
abstraction, vertical relations incorporate purpose
and lead to different abstraction levels.

A

SLO 3

SLO 4

Elastic strategy y

Elastic strategy B

J

Elastic strategy a }
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DeepSLOs

DeepSLOs as a hierarchically structured set of SLOs that
relate causally and purposefully, holistically integrating all
system needs.

3. A complete DCCS can be mapped with several

DeepSLO that connect at their highest level, allowing

each DeepSLO to properly propagate towards the
infrastructure the shared objectives.

4. They provide a framework to solve the multiple
elasticity strategy problem.

5. Integrate transversal features such as privacy,
security, energy-efficiency, reliability...

Abstraction

N

Elastic strategy 6

Elastic strategy y

SLO 4

Elastic strategy B

)

Elastic strategy a

|
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Stream Processing Scenarios

Commonly addressed use cases revolve around continuous stream processing, in case time-critical
adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.

Video Processing (Yolo V8) Mobile Mapping (Lidar) QR Scanner (OpenCV)

2017/03/17 17:51:18

Object detection in a video stream using Yolo [6] Creating a mobile map from binaries using Lidar [6] QR code scanning in a video using OpenCV [6]

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025)
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Elastic Quality

Problem: with limited resources, find alternative and
effective strategies to ensure processing SLOs; use
MB to create interpretable representation of service
behavior; include relevant metrics and actions

Resulting model contains:

a Target objectives (i.e., SLOs)
a Factors influencing/depending SLOs
o Optimal system configuration

3-Step basic methodology for providing
this model through (1) Bayesian Network
Learning (BNL), (2) Markov Blanket (MB)
extraction, and (3) Inference.

[7] Sedlak et al., Designing Reconfigurable Intelligent Systems with Markov Blankets (2023)

#1.1 Structure learning

Energy
Delay

Service Level Objectives

\AJ

#1.2 Parameter learning

Ideal configuration

Bayesian network

Probability of SLO violations

Jetson Xavier [7]

-
#2 Extract M8 \j&
_—

Markov blanket

_ #3Infer knowledge j

<

[7]
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Elastic Quality (cont.)

Bayesian Network Learning Markov Blanket Selection

NS

Markov blanket

Bayesian network

O Structure Learning O Causality filter

Directed Acyclic Graph (DAG)
subset Create system

2 Parameter Learning interface

Max. Likelihood Estimation
Conditional Prob. Table (CPT) 0 Identify variables

that impact SLO
fulfillment

Knowledge Extraction

Probability of SLO violations

Ideal configuration
&

o P < x) for different

variable combinations

o Find Bayes-optimal

system configuration

o E.g., estimate impact

of GPU, energy cons.
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Generalizing Approach

Transitive Requirements [5]

SLOs by stream consumers determine the service quality
that each “link” has to provide; compose MBs of dependent
services to find implications and optimize deployment

Spanning CC with SLOs [6]

Microservice architectures composed of various services
with SLOs for user-facing layer, e.g., latency or quality; infer
lower-level SLOs and parameters for influential services

SLO-Aware Offloading [7]

Offloading a task to a resource-restricted device jeopardizes
SLO fulfillment of existing services; estimate the implication
to global SLO fulfillment to find suitable device hosts

[6] Sedlak et al., Diffusing High-level SLO in Microservice Pipelines (2024)

[7] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons (2024)

Latency Bl

€ ‘| P
ices

Alternative
deployments
v

Ingest video data i

Optimizing the deployment of microservice pipelines
according to the SLOs posed for each service [5]
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Refining Approach

Known Shortcomings

(1) BNL requires large amounts of training data in
upfront;

(2) if discrete, must visit all possible states (e.g.,
scaling actions);

(3) over time, models get distorted due to
variable drifts

Active Inference

Concept from neuroscience developed by Friston
et al. [7,8]; allows agents to interact with their
environment by learning the underlying
generative models to persist over time

[7] Parr, Pezzulo, and Friston; Active Inference: The Free Energy Principle in Mind, Brain, and Behavior (2022)

[8] Friston et al., Designing ecosystems of intelligence from first principles (2024)

Action-perception cycle [7]
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Active Inference

Describes how systems maintain their states and make predictions about their environment to minimize
free energy.

Active Inference Framework

1. Objective: Minimize free energy (a measure of uncertainty) to maintain homeostasis and predict
environmental changes.

2. Core Concepts:
- Free Energy Principle: Systems minimize the difference between predicted and actual sensory inputs.
- Bayesian Inference: Use of probabilistic models to update beliefs about the state of the world based
on new data.

- Generative Models: Systems use models to generate predictions about sensory inputs and outcomes.

3. Mechanisms:
- Perception: Involves updating beliefs about the state of the environment based on sensory inputs.
- Action: Involves selecting actions that minimize expected free energy by reducing prediction errors.
- Learning: Adjusting the parameters of generative models to improve future predictions and actions.

Active Inference is a framework that integrates perception, action, and learning through Bayesian
inference and generative models to minimize prediction errors and free energy. It has significant
applications in fields like robotics, machine learning, and cognitive computing, where systems need to
predict, adapt, and learn from their environment efficiently.

ACTIVE
INFERENCE

The Free Energy Principle in
Mind, Brain, and Behavior

THOMAS PARR
GIOVANNI PEZZULO
KARL J. FRISTON

“Probably the most lucid and comprehensive
treatment of the concept of active inference to date.”

—Tomas Ryan, Trinity College Dublin

[1] Friston et al.,Designing Ecosystems of
Intelligence from First Principles,
https://doi.org/10.48550/arXiv.2212.01354
[2] Friston, Life as we know it,
https://doi.org/10.1098/rsif.2013.0475

[3] Palacios et al., On Markov blankets and
hierarchical self-organisation,
https://doi.org/10.1016/].jtbi.2019.110089
[4] Kirchhoff et al., The Markov blankets of
life: autonomy, active inference and the FEP,
https://doi.org/10.1098/rsif.2017.0792

[5] Parr et al., Active Inference: The Free
Energy Principle in Mind, Brain, and Behavior,
https://doi.org/10.7551/mitpress/12441.001.
LLLE 43
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Research Scope

Intersection between distributed service assurance and Active Inference:

o Structural causal models
« Causality to tame large scale networks Markoy blanket
« Revealing and managing dependencies

blanket of blankets

we model the world

 Self-evidenced cellular structures
« Evaluate continuously how to fulfill SLOs
« Based on empirical values (i.e., metrics)

blankets within blankets

we model ourselves modelling the world

« Homeostasis — Equilibrium

[3] Kirchhoff et al., The Markov blankets of life: autonomy, active inference and the FEP, https://doi.org/10.1098/rsif.2017.0792

blankets all the way down

[3]

pI‘O[OZOﬁ
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Active Inference applied

1. Mapping between neuroscience and distributed

computing systems [6,15,16]; understanding processing Reconfigure
requirements (i.e., SLOs) as a form of homeostasis, e.g., P~
cell temperature C

2. Create autonomous components that identify how to ~
ensure requirements and resolve them independently,
clear modelling between higher-level and low-level
Components Stream Data /\°<\ i

3. Simplify service orchestration in large-scale distributed
systems, such as Computing Continuum; encapsulation
and decentralized decision-making of individual
components

Ensure internal requirements [15]

[15] Sedlak et al., Active Inference on the Edge: A Design Study (2024)
[16] Sedlak et al., Equilibrium in the Computing Continuum through Active Inference (2024)
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AIF Architecture in a Nutshell

Approach

(1) Specify ideal runtime
behavior through SLOs

(2) AIF agents perceive
their environment and
enact on it

(3) Perception predicts the
expected SLO fulfillment
and adjusts the generative
model

(4) Action phase
reconfigure local
processing environment to
minimize FE and fulfill
SLOs

Perception Phase Action Phase

Predict Sensory Input D »  Decisionmaking ————»{ Orchestration

Compare to Event @ EPragmaticVaIue Zl. Elnformation Gain ? .

Update Beliefs E
‘ C@<7 Monitor Metrics <>

/. o 00
Energy
.\3‘( \. Preferences |
< Delay

S

Causal Graph || Conditional Probabilities Service Level Objectives Stream Processing

Action and perception cycles performed by the AIF agent to create an accurate model and shape the world [6]

46



Ssummary

loT & Edge create countless applications for human
benefit; pose challenges due to resource limits, for
which the Computing Continuum can be a remedy

Processing SLOs must be continuously ensured;
presented mechanisms designed to ensure SLO
fulfillment and scale services in multiple dimensions

Active Inference as natural fit with MB & behavioral
models; extend the methodology for maintaining
generative models accurate and react dynamically

Energy |
I

latency

ydl

Y

network
cpu

type

power

gpu

memory
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Preliminary Work

e Local Requirements assurance by
employing BN and MB [6] =

‘Static Bayesian Network Learning”

e Design Study for AIF agents in
distributed systems [7]

Designing Reconfigurable Intelligent
Systems with Markov Blankets

Boris Sedlak(® @, Victor Casamayor Pujol®, Praveen Kumar Donta
and Schahram Dustdar

Distributed Systems Group, TU Wien, 1040 Vienna, Austria
{o.5edlak, v.casamayor, pdonta, dustdar}edsg tuwicn . ac.at

Abstract. Compute Continuum (CC) systems comprise a vast mum-
ber of devices distributed over computational tiers. Evaluating business
requirements, ie., Service Level Objectives (SLOs), requires collectin
data from all those devices; if SLOs are violated, devices must be recor
figured to ensure correct operation. If done centrally, this dramatically
inereases the number of devices and variables that must be considered,
while creating an enormous communication overhead. To address this,

we (1) introduce a causality filier based on Markov blankets (MB) that
limits the number of variables that each device must track, (2) evalu-
ate SLOs decentralized on a device basis, and (3) infer optimal device
configuration for fulfilling SLOs. We evaluated our methodology by ana-
Iyzing video stream tras
that ensure the Quality of Service (QoS). The devices thus perceived
their environment and acted accordingly — a form of decentralized intel-
ligence.

formations and providing device configurations

Keywords: Intelligent Systems - Computing Continuum - Markov
Blankets - Sensory State - Service Level Objectives - Exact Inference

1 Introduction

Computing Contimum (CC) systems as envisioned in [2,5] are large-scale dis-
tributed systems composed of a wide variety of devices. Applications running in
the CC pose ambitious requirements, ¢.g., near real-time latency while dealing
with huge volumes of data. Additionally, requirements may change over time;
to provide the best possible service, the CC system must adapt. However, given
the highly distributed nature of the CC, it is a challenging task to dynamically
reconfigure all contained devices, while ensuring high-level system objectives.
In this regard, we envision CC systems employing decentralized intelligence,
which allows system parts to make decisions independently, in favor of the appli-
cation running on top. Smaller units in the CC (e.g., edge devices) would thus
obtain the ability to evaluate their own state to ensure requirements are ful-
filled. One promising option to model this, is the behavioral concept introduced

Funded by the European Union (TEADAL, 101070186)

The Autbox(s). under exclsivs licenes to $pringer Xataro Switzerland AG 323
F. Monti et al OC 2023, LNCS 14419, pp. 42-50, 202
Witpa ot ot 1 3.031-484216_1

Active Inference on the Edge: A Design Study

Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology (T Wien). Vienna 1040, Austria
Email: {bscdlak, v.casmayor, pdonta. dusidar) @ dsg tuwien.ac.at
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Equilibrium in the CC through Active Inference

e Core problem stems from CC architecture
e Impossible to centrally evaluate requirements
e Heterogeneity and context-dependence
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e Requires components to operate decentralized
e Devices unaware of how to fulfill their SLOs
e Active Inference can provide this knowledge
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qui of each

tier. Given the system’s scale, the Service Level Objectives (SLOs), which are expressed as these rcqulrcments,
must be disaggregated into smaller parts that can be d lized. We present our k for collab

edge intelligence, enabling individual edge devices to (1) develop a causal understanding of how to enforce
their SLOs and (2) transfer knowledge to speed up the onboarding of heterogeneous devices. Through
collaboration, they (3) increase the scope of SLO fulfill We impl d the k and 1 da

use case in which a CC system is responsible for ensuring Quality of Service (QoS) and Quality of Experience
(QoE) during video streaming. Our results showed that edge devices required only ten training rounds to ensure
four SLOs; furthermore, the underlying causal structures were also rationally explainable. The addition of new
types of devices can be done a posteriori; the framework allowed them to reuse existing models, even though
the device type had been unknown. Finally, rebalancing the load within a device cluster allowed individual
edge devices to recover their SLO compliance after a network failure from 22% to 89%.

1. Introduction

Computing Continuum (CC) systems, as envisioned in [1-3], are
large-scale distributed systems composed of multiple computational
tiers. Each tier serves a unique purpose, e.g., providing latency-sensitive
services (i.e., Edge), or an abundance of virtual, scalable resources
(i.e., Cloud). However, the requirements that each tier must fulfill
are equally diverse, as they span a wide variety of edge devices and
fog nodes. Assume that requirements would be ensured in the cloud,
e.g., by analyzing metrics and reconfiguring individual devices, massive
amounts of data would have to be transferred. Also, if edge devices fail
to provide their service to a satisfying degree, the latency for detecting
and resolving this would be high.

Given the scale of the CC, requirements must be decentralized; this
means that the logic to evaluate requirements must be transferred to the
component that they concern. Cloud-level requirements, i.e., Service

[8] Equilibrium in the Computing Continuum through Active Inference, FGCS 160 (2024), 92-108

and SLO fulfillment [5]. This promotes the usage of Active Inference
(AIF) [6], an emerging concept from neuroscience that describes how
the brain continuously predicts and evaluates sensory information to
model real-world processes. By extending individual CC components
with AIF, they could develop a causal understanding of how to adjust
their environment to ensure preferences (i.e., SLOs).

Ensuring SLOs autonomously (i.e., evaluating the environment to
infer ad ) makes comp intelligent [7]; any system com-
posed entirely of such intelligent, self-contained components becomes
more resilient and reliable. No central logic must be employed to ensure
SLOs; thus, higher-level components can rely on the SLO fulfillment
of underlying components. Ascending from intelligent edge devices,
the next level would be intelligent fog nodes; those we see in the
ideal position to orchestrate the service of edge devices. Thereby, edge
devices in proximity are bundled into a device cluster, administered
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Resea rCh Iine - MOdEl e How to deal with a multimodal environment?

Markovian models

e Markov blanket (DAG) o
e Markov fields (non directed graphs)
e Markov chains

How to model relations?

Deep neural networks e How to treat abstraction?

e Federated learning
® Graph neural networks

Agent based

e How to obtain enough data?

® Active inference

e Reinforcement learning
e And many more... How to deal with IID data? How to

tackle uncertainty?
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Conclusions

1. Distributed Computing Continuum from loT->Edge->Fog->Cloud
2. Distributed Intelligence

3. SLOs, Markov Blankets, Active Inference
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