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The Computing Continuum 

Computing fabric composed of all current computational tiers.

A seamless integration of

the computing infrastructure.

Leverages the best of each tier.

Expected applications:

➔ eHealth

➔ Autonomous vehicles

➔ Smart cities

➔ Resources management

Today we have a centralized and limited visibility over the system performance, quality of service (QoS), 
and Quality of data.
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The Computing Continuum 

Multi-proprietary: Shared infrastructure ownership

System issues propagate 

Each stakeholder has:
➔ Own global interest 
➔ Local requirements of its infrastructure.

We need tools to understand the relationship between each SLO (requirement) and how propagation 
unfolds.
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The Computing Continuum 

Geographically distributed

Challenges deployment and service adaptation

Centralized governance falls short
(intensified by stricter requirements)

Tailored runtime adaptations (Service + HW)

We need decentralized governance (intelligence), which considers local characteristics of the service 
and the host.
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Governance (Intelligence) in Continuum Computing

• Distributed apps span sensors, edge, 
fog, and cloud.

• Reactive, centralized management 
often fails.

• Non-stationarity breaks SLO 
compliance.

• Need predictive regulation over 
reactive.
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Biological Lens: Predictive Regulation

• Organisms regulate by anticipating changes.

• Homeostasis = reactive; Allostasis = predictive.

• Free Energy Principle: minimize prediction error.

• Analogy: components should anticipate loads.
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Physics Lens: Fluctuation–Dissipation Theory (FDT)

• FDT links fluctuations to responses.

• Departures signal nonequilibrium dynamics.

• In computing: compare expected vs observed 
responses.

• Alignment = predictive equilibrium.
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Predictive Equilibrium Defined

• Alignment between predicted and observed outcomes.

• Active property: sustained by adaptation.

• Combines dynamic balance, reconfiguration, predictive consistency.

• Basis for antifragility.
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Mathematical Foundations: Bayes’ Theorem

Bayes’ rule updates beliefs given new observations.

• Prior p(s): belief before seeing data.

• Likelihood p(o|s): how observations arise from states.

• Evidence p(o): normalizing constant.

• Posterior p(s|o): updated belief after observation.
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Bayes’ Theorem Example: Rain and Wet Grass

• Prior: P(Rain) = 0.3 (30% chance of rain).

• Likelihood: P(Wet|Rain) = 0.9 (grass usually wet if it rains).

• Alternative: P(Wet|¬Rain) = 0.1 (sprinkler can also make 
grass wet).

• Observation: Grass is wet → update belief about rain.

• Posterior: P(Rain|Wet) ≈ 0.64 (now more likely it rained).
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Variational Free Energy (VFE)

• Measures how well an approximate posterior Q(s) matches the true posterior.

• Minimizing F ≈ maximizing model evidence (probability of data under model).

• Balances Accuracy (fit to data) and Complexity (change in beliefs).

• Tractable alternative to exact Bayesian inference.
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Expected Free Energy (EFE)

Extends free energy to future outcomes.

• Evaluates policies π: sequences of actions.

• Captures both pragmatic value (rewards) and epistemic value (information gain).

• Provides solution to explore–exploit dilemma.
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Kullback–Leibler (KL) Divergence

Measures dissimilarity between two probability distributions.

• D=0 when Q (posterior) and P (prior) match perfectly; larger values mean greater 
divergence.

• In Active Inference: diagnostic of model–world mismatch.

• Used as both early warning and learning signal.
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KL Divergence Example

• Suppose Expected distribution = [0.2, 0.8].

• Observed distribution = [0.5, 0.5].

• KL divergence quantifies the mismatch.

• Here, D ≈ 0.19, indicating nontrivial divergence.
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KL Divergence as Diagnostic Tool

• Distance between expected and observed 
behavior.

• Localizes failure causes: rewiring, coupling shifts, 
noise.

• Early-warning signal for model revision.

• Doubles as learning signal.
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Antifragility in Distributed Systems

• Systems improve because of stress, not 
despite it.

• Perturbations expose mismatches → 
learning opportunity.

• BNs + KL provide learning gradient.

• Equilibrium supplies safety rails.
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Architecture: Predictive Equilibrium in Action

• Local BNs at edge nodes predict responses.

• Fog nodes run perturbation campaigns and compute divergence.

• Cloud meta-controller aggregates signals.

• Balances exploration vs exploitation.
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Human Ecosystem

Infrastructure Systems

Regulation Systems
Endocrine System

Lymphatic System

Cardiovascular System

Skeletal System

Nervous System

• Brain

• Spinal Cord

• Cranial Nerves

• Spinal Nerves

Control Internal Environment, Memory and Learning (86 billion neurons)

• Oxygen

• White Blood Cells

• Hormones

• Nutrients

Helping the body meet the demands (40k neurons)

The human body is comprised of a series of complex systems, including:
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Human Ecosystem

Cardiovascular System

Skeletal System

Lymphatic System

Endocrine System

The human body is comprised of a series of complex systems, including:

Nervous System Infrastructure Systems

Regulation Systems
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Human Ecosystem

• Part of the immune system

• Protects your body against foreign invaders

• Control and coordinate your body's metabolism

• Response to injury, stress, and mood

Infrastructure Systems

Cardiovascular System

Skeletal System

Lymphatic System

Endocrine System
Regulation Systems

The human body is comprised of a series of complex systems, including:

Nervous System

DeepSLOs

Collaborative Learning

Representation Learning

Zero Trust

20



Human body self-regulates:

● Temperature

● Blood pressure

● …

Human body self-heals

Humans also learn how to maintain her/his 

needs satisfied.

Nervous system

Human Ecosystem

Homeostasis and Resilience in DCCS
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Overall state - Top-bottom sensing.

From feeling good-bad to actual problem.

We also need this feature for DCCS due to 

their scale and interconnections.

Nervous system

Human Ecosystem

Homeostasis and Resilience in DCCS

22



stretch when a force stresses them

shrink when the stress is removed

(Physics) The property of returning to an initial form or state 
following deformation

Elasticity (Resilience)

e.g.,  acquire new resources, reduce quality

e.g., release resources, increase quality
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Elasticity > Scalability

Dustdar S., Guo Y., Satzger B., Truong H. (2012) Principles of Elastic Processes, IEEE Internet Computing, Volume: 16, Issue: 6, Nov.-Dec. 2012
24
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Resources, Quality, Cost

● Highest-level description of system state from Cloud 

computing/elasticity work [1].

● DCCS have many different stakeholders with different interests, RQC can 
frame a common language.  

[1] S. Dustdar, Y. Guo, B. Satzger, and H. L. Truong, “Principles of elastic processes,” IEEE Internet Computing, vol. 15, no. 5, pp. 66–71, Sep. 2011, doi: 10.1109/MIC.2011.121.

Operational equilibrium

● Defined as an operational mode of the application, from the highest 

level state.

● Any system can have several operational equilibria, leading to different 

configurations of the underlying infrastructure

High-level state
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The Cartesian Blanket
Adapting elasticity in the continuum

• System control based SLOs (Service Level Objectives)

• SLOs are represented as thresholds on the Cartesian 
space

• The system space is delimited within an hexahedron. 
• There is minimum and maximum value for each variable
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The Cartesian Blanket

• The space is constraint to the actual infrastructure 
characteristics; not homogenous.

• The infrastructure is represented as points, not 
unlimited.

• The only valid infrastructure is the one inside the 
hexahedron.

Adapting elasticity in the continuum
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The Cartesian Blanket

• The system space possible configurations can be 
visualized as a stretched blanket over the 
infrastructure points.
• Assuming linear interpolation on the space between the 

infrastructure components.

• Now we have the system represented, but

How can this representation help on the design and 
management of the distributed computing continuum 

systems?

Adapting elasticity in the continuum
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Markov Blanket

In a Bayesian Network, the Markov Blanket of a node 

(N) is composed of the parents (P), the children (C) and 

the co-parents of the children (S).  

P P

N S

C C

The Markov Blanket of a random variable is the subset of nodes that provide enough 

information to statistically infer its value. Concept from Judea Pearl [1].

A tool for causal filtering.

[1] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc. 29



Markov Blanket (MB)

Interactions between systems (e.g., human in 
world) can be expressed through MBs – fulfill 
Markov property; allow modeling reactive 
behavioral models for elasticity

Creates formal boundary between a system 
and external states – limits scope of variables 
that determine internal state; discard 
remaining information to reduce dimension

Provides clear interfaces for sensory- and 
action states; policy (e.g., scaling) as a mapping 
between these states

[4] Dustdar, Casamayor Pujol, and Dustdar; On Distributed Computing Continuum Systems (2023)
[5] Sedlak, Casamayor Pujol, Donta, and Dustdar; Markov Blanket Composition of SLOs (2024)

Behavioral Markov blanket of a system [4]

Action-perception cycle between multiple entities [5]
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Causal Inference

➢ Discover & leverage causal relationships.

➢ 3 Rungs on the ladder of causation. [2]

○ Observational

○ Interventional

○ Counterfactual

➢ Explainability capacity

SLO

[2] J. Pearl and D. Mackenzie (2018), The Book of Why: The New Science of Cause and Effect. USA: Basic Books, Inc., 31



Service Level Objectives
Service Level Objectives (SLOs) specify 
requirements that must be ensured throughout 
operation (e.g., latency < t). Focused mainly on 
performance, narrows the scope

Elasticity Strategies scale a system according to 
current demand; e.g., if performance is 
insufficient, allocate more resources, change 
quality, adapt costs. However, what if this does 
not fulfill SLOs?

Edge Computing allows to decrease latencies for 
IoT applications; can use load-balancing 
mechanisms to direct load, but only scale 
resources up to a local limited

[2] Ricciardi et al., Saving Energy in Data Center Infrastructures (2011)

Elasticity allocates the right amount of resources [2]
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DeepSLOs

➢ A construct we envision relating SLOs

➢ Provides a complete view of DCC system

➢ Allows aggregation towards higher abstractions

SLO 
B

SLO 
C

SLO 
A

SLO 
D
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Problem Summary

Intricacy of requirements
Large-scale distributed systems are complex and their 
correct function requires more flexible ways to ensure 
SLOs

→ Composable behavioral models

Resource limitations on Edge
Resources are scarce at the Edge and it might often 
not be possible to offload, scale vertically, or 
horizontally 

→ Multi-dimensional elasticity strategies

ML algorithms as blackbox
Low trust in ML-based orchestration mechanisms (incl. 
autoscalers) that cannot be verified empirically 

→ Causality-based service adaptation
34



SLOs and Behavioral Models

MB: Expresses how to evaluate a composite SLO 
and how to react according to the current device 
context

Behavioral model
Internal state (●) evaluates objectives and how 
these relate to external sensory inputs (●); 

can interact with the world through action, i.e., 
elasticity strategies (●), 

which are influenced by contextual factors (●) 

[3] Sedlak et al., Controlling Data Gravity and Data Friction: From Metrics to Multidimensional Elasticity Strategies (2023)

Example of a behavioral model for data gravity [3]

35



Metric 
B

SLO 3

Elastic strategy δ

Metric 
A

SLO 2

DeepSLOs
Metric 

C

SLO 1

Metric 
E

SLO 4

Metric 
D

Elastic strategy β

Elastic strategy γ

Elastic strategy α

Abstraction

DeepSLOs as a hierarchically structured set of SLOs that 

relate causally and purposefully, holistically integrating all 

system needs. 

1. A single DeepSLO can be in charge of an autonomic 

component of the system, providing ad-hoc 

objectives and elastic strategies at different 

abstraction levels, and mapping into the 

infrastructure.

2. Horizontal relations are within the same level of 

abstraction, vertical relations incorporate purpose

and lead to different abstraction levels.
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Metric 
B

SLO 3

Elastic strategy δ

Metric 
A

SLO 2

DeepSLOs
Metric 

C

SLO 1

Metric 
E

SLO 4

Metric 
D

Elastic strategy β

Elastic strategy γ

Elastic strategy α

Abstraction

DeepSLOs as a hierarchically structured set of SLOs that 

relate causally and purposefully, holistically integrating all 

system needs. 

3. A complete DCCS can be mapped with several

DeepSLO that connect at their highest level, allowing 

each DeepSLO to properly propagate towards the 

infrastructure the shared objectives.

4. They provide a framework to solve the multiple
elasticity strategy problem. 

5. Integrate transversal features such as privacy, 
security, energy-efficiency, reliability…
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Stream Processing Scenarios

Commonly addressed use cases revolve around continuous stream processing, in case time-critical
adaptations are required, this poses a higher need for sophisticated adaptation mechanisms.

Video Processing (Yolo V8)                      Mobile Mapping (Lidar)                       QR Scanner (OpenCV)           

[6] Sedlak et al., Adaptive Stream Processing on Edge Devices through Active Inference (Scheduled for 2025)

Creating a mobile map from binaries using Lidar [6] QR code scanning in a video using OpenCV [6]Object detection in a video stream using Yolo [6]
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Elastic Quality 
Problem: with limited resources, find alternative and 
effective strategies to ensure processing SLOs; use 
MB to create interpretable representation of service 
behavior; include relevant metrics and actions

Resulting model contains:
abcd

❏ Target objectives (i.e., SLOs)
❏ Factors influencing/depending SLOs
❏ Optimal system configuration

3-Step basic methodology for providing 
this model through (1) Bayesian Network 
Learning (BNL), (2) Markov Blanket (MB) 
extraction, and (3) Inference.

[7] Sedlak et al., Designing Reconfigurable Intelligent Systems with Markov Blankets (2023)

[7]

Jetson Xavier [7]
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Elastic Quality (cont.)

❏ P(SLO < x) for different
variable combinations

❏ Find Bayes-optimal
system configuration

❏ E.g., estimate impact
of GPU, energy cons.

❏ Causality filter

Extract a variable 
subset Create system 
interface

❏ Identify variables 
that impact SLO 
fulfillment

❏ Structure Learning
Hill-Climb Search (HCS)
Directed Acyclic Graph (DAG)

❏ Parameter Learning
Max. Likelihood Estimation
Conditional Prob. Table (CPT)

Bayesian Network Learning Markov Blanket Selection Knowledge Extraction
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Generalizing Approach

[6] Sedlak et al., Diffusing High-level SLO in Microservice Pipelines (2024)
[7] Sedlak et al., SLO-Aware Task Offloading Within Collaborative Vehicle Platoons (2024)

Transitive Requirements [5]
SLOs by stream consumers determine the service quality
that each “link” has to provide; compose MBs of dependent 
services to find implications and optimize deployment

Spanning CC with SLOs [6]
Microservice architectures composed of various services 
with SLOs for user-facing layer, e.g., latency or quality; infer 
lower-level SLOs and parameters for influential services

SLO-Aware Offloading [7]
Offloading a task to a resource-restricted device jeopardizes 
SLO fulfillment of existing services; estimate the implication 
to global SLO fulfillment to find suitable device hosts

Optimizing the deployment of microservice pipelines 
according to the SLOs posed for each service [5]

41



Refining Approach
Known Shortcomings
(1) BNL requires large amounts of training data in 
upfront;
(2) if discrete, must visit all possible states (e.g., 
scaling actions);
(3) over time, models get distorted due to 
variable drifts

Active Inference
Concept from neuroscience developed by Friston 
et al. [7,8]; allows agents to interact with their 
environment by learning  the underlying 
generative models to persist over time Action-perception cycle [7]

[7] Parr, Pezzulo, and Friston; Active Inference: The Free Energy Principle in Mind, Brain, and Behavior (2022)
[8] Friston et al., Designing ecosystems of intelligence from first principles (2024)
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Active Inference

[1] Friston et al.,Designing Ecosystems of 
Intelligence from First Principles, 
https://doi.org/10.48550/arXiv.2212.01354
[2] Friston, Life as we know it, 
https://doi.org/10.1098/rsif.2013.0475
[3] Palacios et al., On Markov blankets and 
hierarchical self-organisation, 
https://doi.org/10.1016/j.jtbi.2019.110089
[4] Kirchhoff et al., The Markov blankets of 
life: autonomy, active inference and the FEP, 
https://doi.org/10.1098/rsif.2017.0792
[5] Parr et al., Active Inference: The Free 
Energy Principle in Mind, Brain, and Behavior, 
https://doi.org/10.7551/mitpress/12441.001.
0001

Describes how systems maintain their states and make predictions about their environment to minimize
free energy. 

Active Inference Framework

1. Objective: Minimize free energy (a measure of uncertainty) to maintain homeostasis and predict
environmental changes.

2. Core Concepts:
- Free Energy Principle: Systems minimize the difference between predicted and actual sensory inputs.
- Bayesian Inference: Use of probabilistic models to update beliefs about the state of the world based

on new data.
- Generative Models: Systems use models to generate predictions about sensory inputs and outcomes.

3. Mechanisms:
- Perception: Involves updating beliefs about the state of the environment based on sensory inputs.
- Action: Involves selecting actions that minimize expected free energy by reducing prediction errors.
- Learning: Adjusting the parameters of generative models to improve future predictions and actions.

Active Inference is a framework that integrates perception, action, and learning through Bayesian
inference and generative models to minimize prediction errors and free energy. It has significant
applications in fields like robotics, machine learning, and cognitive computing, where systems need to
predict, adapt, and learn from their environment efficiently. 43

https://doi.org/10.48550/arXiv.2212.01354
https://doi.org/10.1098/rsif.2013.0475
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Research Scope

Intersection between distributed service assurance and Active Inference: 

• Structural causal models
• Causality to tame large scale networks
• Revealing and managing dependencies

• Self-evidenced cellular structures 
• Evaluate continuously how to fulfill SLOs
• Based on empirical values (i.e., metrics)

• Homeostasis – Equilibrium

[3]

[3] Kirchhoff et al., The Markov blankets of life: autonomy, active inference and the FEP, https://doi.org/10.1098/rsif.2017.0792 44
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Active Inference applied

1. Mapping between neuroscience and distributed 
computing systems [6,15,16]; understanding processing 
requirements (i.e., SLOs) as a form of homeostasis, e.g., 
cell temperature

2. Create autonomous components that identify how to 
ensure requirements and resolve them independently, 
clear modelling between higher-level and low-level 
components

3. Simplify service orchestration in large-scale distributed 
systems, such as Computing Continuum; encapsulation
and decentralized decision-making of individual 
components

[15] Sedlak et al., Active Inference on the Edge: A Design Study (2024)
[16] Sedlak et al., Equilibrium in the Computing Continuum through Active Inference (2024)

Ensure internal requirements [15]
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AIF Architecture in a Nutshell

Approach

(1) Specify ideal runtime 
behavior through SLOs

(2) AIF agents perceive 
their environment and 
enact on it

(3) Perception predicts the 
expected SLO fulfillment 
and adjusts the generative 
model

(4) Action phase 
reconfigure local 
processing environment to 
minimize FE and fulfill 
SLOs

Action and perception cycles performed by the AIF agent to create an accurate model and shape the world [6]
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Summary

IoT & Edge create countless applications for human 
benefit; pose challenges due to resource limits, for 
which the Computing Continuum can be a remedy

Processing SLOs must be continuously ensured; 
presented mechanisms designed to ensure SLO 
fulfillment and scale services in multiple dimensions

Active Inference as natural fit with MB & behavioral 
models; extend the methodology for maintaining 
generative models accurate and react dynamically
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Preliminary Work

● Local Requirements assurance by 
employing BN and MB [6] →

“Static Bayesian Network Learning”

● Design Study for AIF agents in 
distributed systems [7]

Distributed Intelligence in the Computing Continuum with Active Inference, Casamayor V., Sedlak, B., Salvatori, T., Friston, K.,
Dustdar, S., under review

[6] Designing Reconfigurable Intelligent Systems with Markov Blankets, ICSOC 2023, https://doi.org/10.1007/978-3-031-48421-
6_4
[7] Active Inference on the Edge: A Design Study, pending at IEEE PerconAI 2024, https://doi.org/10.48550/arXiv.2311.1060748

https://doi.org/10.1007/978-3-031-48421-6_4
https://doi.org/10.48550/arXiv.2311.10607


Equilibrium in the CC through Active Inference

● Core problem stems from CC architecture
● Impossible to centrally evaluate requirements
● Heterogeneity and context-dependence

● Requires components to operate decentralized
● Devices unaware of how to fulfill their SLOs
● Active Inference can provide this knowledge

[8] Equilibrium in the Computing Continuum through Active Inference, FGCS 160 (2024), 92-108 49



Markovian models 

● Markov blanket (DAG)

● Markov fields (non directed graphs)

● Markov chains 

Deep neural networks

● Federated learning

● Graph neural networks

Agent based

● Active inference

● Reinforcement learning

● How to deal with a multimodal environment?

Incorporate data from video sources, results from video 
processing units, quality of the predictions, overall 
system cost…

● How to model relations?

The shortage of computing power on an edge device will 
affect overall control system, but how much?

● How to treat abstraction?

Include concepts of cost or quality along with basic 
infrastructure metrics, i.e. number of drivers detected at 
the phone and GPU usage in the same framework.

● How to obtain enough data?

Large, hyper-distributed and open systems. How to know 
the system is accurate?

● And many more… How to deal with IID data? How to 
tackle uncertainty?

Research line - Model
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Conclusions

1. Distributed Computing Continuum from IoT->Edge->Fog->Cloud

2. Distributed Intelligence

3. SLOs, Markov Blankets, Active Inference
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