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Motivation

• A tumor is an abnormal growth of 
tissues in the brain

• The incidence rate of brain tumor is 
increasing worldwide 

• Brain tumor types: glioma 
meningioma, pituitary, etc.

• Trends:

• Rising incidence

• High mortality and disability

• Clinical complexity



AI Applications in Brain Cancer

Tissue & Tumor Classification

• Healthy vs malignant tumor tissues, 

• Low-grade vs high-grade gliomas.

Tumour Segmentation

• Identify tumor boundaries from MRI scans.

Explainable AI (XAI)

• Visualize features and regions influencing AI decisions.

Survival Time Prediction

• Predict patient survival time based on tumor volume, age, 
tumor type, etc.

• Provide data for personalized treatment plans.



Inputs & Outputs for AI Models in Tumor 
Classification
Inputs:

• Medical Imaging Data: MRI scans (T1, T2, FLAIR) 
offer detailed insights into brain's structure and 
potential abnormalities.

• Clinical Data: Patient demographics (age, gender), 
medical history, and tumor-related characteristics 
(size, location).

• Histopathological Data: biopsy data or molecular 
profiles.

Normal Brain MRI (Y3 to Y5) Benign tumor MRI 
(Y10 to Y112) Malignant tumor MRI (Y17 to Y19)



Inputs & Outputs for AI Models in Tumor 
Classification
Outputs:

• Tumor Type: 
• Binary classification (e.g., glioma vs. non-glioma), 
• Multi-class (low-grade vs. high-grade glioma), or 
• Differentiate between specific subtypes of tumors 

(e.g., astrocytoma, oligodendroglioma).

• Tumor Grade: 
• Classification into grades (I-IV) based on 

aggressiveness of tumor.

• Probability Scores: 
• Confidence score that indicates likelihood of tumor 

belonging to a certain class. Normal Brain MRI (Y3 to Y5) Benign tumor MRI 
(Y10 to Y112) Malignant tumor MRI (Y17 to Y19)



Recent Evolution of Deep Learning Models for Brain Tumor Recognition



Brain MRI Feature Extraction using Deep 
Convolutional Neural Network (CNN)

Hierarchical Feature Learning: 

• Learn low-level (edges, textures, contrasts), 

• mid-level (shapes, structures), and 

• high-level (tumor regions, anatomical features) 
representations from MRI scans.

Extract Spatial and Structural Features: 

• Fine-grained texture features that differentiate 
between healthy and abnormal brain tissues.



Typical Workflow of Brain Tumor Classification

Kurdi, S.Z.; Ali, M.H.; Jaber, M.M.; Saba, T.; Rehman, A.; Damaševičius, R. Brain Tumor Classification Using Meta-Heuristic Optimized Convolutional 
Neural Networks. J. Pers. Med. 2023, 13, 181. https://doi.org/10.3390/jpm13020181



Brain Tumor Localization by Image 
Segmentation
Partitioning a brain image into multiple regions to isolate 
and identify specific Areas of Interest (AoI)

• Better understanding of brain structures

• Accurate diagnosis & treatment planning

• Monitoring disease progression

Tumor heterogeneity:

• Brain tumors vary greatly in shape, size, and appearance

• Variability makes segmentation challenging

Manual segmentation challenges:

• Labor-intensive and time-consuming, inconsistent results

AI solutions:

• Automate tumor segmentation 

• Identifying tumor boundaries



Inputs & Outputs for AI Models in Brain 
Tumor Segmentation

Inputs for AI Models in Brain Tumor 
Segmentation
• Medical Imaging Data: MRI scans are the most 

common type of input data used for brain tumor 
segmentation. 

• Preprocessing Information: enhance contrast, 
remove noise, and standardize the imaging 
format, which ensures that the AI model can 
effectively interpret the images.

• Clinical Information (Optional): patient’s age, 
medical history, or previous treatment outcomes.



Inputs & Outputs for AI Models in Brain 
Tumor Segmentation

Outputs of AI Models in Brain Tumor 
Segmentation
• Segmented Tumor Regions: A colored 

segmentation map that separates tumor 
from surrounding healthy tissue.

• Quantitative Metrics: tumor's size, shape, 
and volume, vital for diagnosis, disease 
monitoring  and treatment planning.



Example: Brain Tumor Localization 
using Fuzzy Edge Detection

Objective: Identify and extract tumor regions from 
brain MRI scans.
Fuzzy Edge Detection Method
• Fuzzy Logic: handle uncertainty and imprecision 

in identifying boundaries between tumor and 
healthy tissues.

• Edge Detection: Locates tumor edges in MRI scans.

Maqsood, S., Damasevicius, R., Shah, F.M. (2021). An Efficient Approach for the Detection of Brain Tumor Using Fuzzy Logic and U-NET CNN Classification. ICCSA 
2021. https://doi.org/10.1007/978-3-030-86976-2_8



Example: Brain Tumor Localization 
using Fuzzy Edge Detection

Steps in Fuzzy Edge Detection for Tumor Segmentation
• Contrast enhancement to improve image clarity.
• Fuzzy Rules to detect edges in image.
• 3x3 Convolution Mask to extract neighborhood of pixels.
• Fuzzy Inference converts pixels into fuzzy domain to 

detect edges.
• Fuzzy Edge Patterns identify edge shapes in tumor region.

Maqsood, S., Damasevicius, R., Shah, F.M. (2021). An Efficient Approach for the Detection of Brain Tumor Using Fuzzy Logic and U-NET CNN Classification. ICCSA 
2021. https://doi.org/10.1007/978-3-030-86976-2_8



Integration of Classification and Segmentation Tasks 
for Multimodal Analysis Using AI Models

Multimodal analysis 
• Various types of input data (MRI modalities - T1-

weighted, T2-weighted, and FLAIR) to improve both 
segmentation and classification accuracy. 

• Segmentation identifies and extracts the tumor 
region from the MRI scan.

• Classification determines type and grade of the 
tumor based on extracted features from 
segmented regions.

Inputs for Multimodal Analysis
• Multiple MRI Modalities (T1, T2, FLAIR) provide 

detailed structural views of  brain and tumor.
• Clinical Data: Patient demographics, medical 

history, and genetic information (optional) can be 
incorporated to refine AI predictions.



Integration of Classification and Segmentation Tasks 
for Multimodal Analysis Using AI Models

Deep Learning Models

• CNNs: for both segmentation (to identify 
tumor boundaries) and classification (to 
categorize tumor types and grades).

• Transfer Learning: Pre-trained models are 
fine-tuned on medical datasets, reducing 
training time and improving accuracy.

• Fusion Techniques: Fuse features from 
different modalities for a more robust and 
comprehensive analysis.



Integration of Classification and Segmentation Tasks 
for Multimodal Analysis Using AI Models

Outputs:
• Tumor Segmentation Maps: The AI model 

generates precise segmentation maps that 
highlight the tumor’s location and extent 
within the brain.

• Tumor Classification: Outputs include tumor 
type (e.g., glioma vs. meningioma) and tumor 
grade (I-IV), which are crucial for determining 
treatment approaches.

• Quantitative Metrics: Models output metrics 
like tumor size and volume, which are 
essential for tracking progression.



Multimodal MRI Image Analysis and Feature Fusion Workflow

Khan, M. A., Khan, A., Alhaisoni, M., Alqahtani, A., Alsubai, S., Alharbi, M., Malik, N. A., & Damaševičius, R. (2022). Multimodal brain tumor detection and classification using deep 
saliency map and improved dragonfly optimization algorithm. International Journal of Imaging Systems and Technology (Vol. 33, Issue 2, pp. 572–587). 

T1w, T2w, T1-CE, 

FLAIR images



Brain Image Segmentation Results
Original Images (First Column):

• Raw brain MRI scans.

• Limited contrast and noisy, blurry tumor boundaries.

Enhanced Images (Second Column):

• Contrast-enhanced images for improved visibility of tumor

• Key features of the tumor become more distinguishable.

Segmented Tumor Region (Third Column):

• AI model isolates and segments the tumor region.

• Provides visualization of tumor size and shape for diagnosis.

Tumor Localization (Fourth Column):

• Final result with tumor boundaries outlined in red.

• Accurately pinpoints tumor’s position within the brain.

Khan, M. A., Khan, A., Alhaisoni, M., Alqahtani, A., Alsubai, S., Alharbi, M., Malik, N. A., & Damaševičius, R. (2022). Multimodal brain tumor detection and classification using deep 
saliency map and improved dragonfly optimization algorithm. International Journal of Imaging Systems and Technology (Vol. 33, Issue 2, pp. 572–587). 



Regulations for Deploying AI in Brain Oncology
EU MDR (European Union Medical Device 
Regulation)
• Governs medical devices and diagnostic 

systems in the EU, including AI-based 
software for medical purposes.

• Requires clinical evidence, safety validation, 
and often explainability of algorithms before 
approval.

• AI diagnostic tools classified as medical 
devices and must undergo conformity 
assessment and CE marking.



Regulations for Deploying AI in Brain Oncology
FDA (U.S. Food and Drug Administration)
• Evaluates safety, effectiveness, 

generalizability, and risk management of 
algorithms.

• Software as a Medical Device (SaMD), 
covering adaptive AI/ML models that 
continuously learn after deployment.



Regulations for Deploying AI in Brain Oncology
GDPR (General Data Protection Regulation)
• Includes the “right to explanation”: patients 

can demand to know how algorithmic 
decisions about their health were made.

• Requires data anonymization, and consent 
management in AI-driven medical research.



Black-box Nature of AI Models and Need for 
XAI (eXplainable AI)
Black-box AI models lack transparency and interpretability 
in their decision-making processes.
• Understand how AI models arrive at predictions.
• Lack of transparency limits adoption in clinical settings.
Challenges of Black-box AI in Healthcare
• Trust: Cannot rely on AI models if cannot understand or 

validate results.
• Accountability: Difficult to assign responsibility in cases 

of errors or adverse outcomes.
• Regulatory Barriers: Proving safety of AI models for 

regulatory approval.

Kazimir Malevich, Black Square, 1915



Why AI Explainability Matters?
• Transparent reasoning to integrate AI outputs 

into diagnostic workflows.

• Reduce risk of misdiagnosis and ensures 
accountability in life-critical decisions for 
patient safety.

• Explain predictions across MRI image 
modalities.

• Regulatory compliance to satisfy EU MDR & 
GDPR requirements such as for informed 
consent.



Human-in-the-Loop in Brain Tumor Recognition

• Collaborative decision-making: AI suggests, 
clinicians validate, adjust, or override outputs.

• Human oversight reduces risks of false 
positives/negatives in diagnosis and 
segmentation.

• Expert corrections to retrain and fine-tune AI 
models in continuous feedback loop.

• Human experts identify spurious correlations or 
clinically implausible features flagged by AI.

• Meets regulatory requirements by ensuring AI is 
a support tool, not an autonomous diagnostic 
authority.



Two Ways to Explain: Post-Hoc vs Intrinsic
Post-Hoc Explainability 
• Explanation generated after prediction
• Works with any pre-trained CNN
• Strength: flexible, model-agnostic
• Limitation: separate from training, 

explanations are an add-on



Two Ways to Explain: Post-Hoc vs Intrinsic
Intrinsic Explainability 
• Explanation built into the model 

architecture
• Strength: explanations are integrated & 

faithful
• Limitation: requires custom CNN design



Post-hoc Explanability using Grad-CAM
Grad-CAM (Gradient-weighted Class Activation 
Mapping) 
• Highlight important regions in an image contributing to 

a model’s prediction.

• Computes gradients of the class prediction (e.g., 
tumor) concerning feature maps in the final 
convolutional layers of the CNN.

• Produces a heatmap that overlays on the brain MRI to 
indicate areas with highest influence on the decision.

• Highlights most significant regions in the scan, helping 
to localize the tumor.



Localization of Tumor using Grad-CAM
Application of Grad-CAM in Brain Cancer
• Shows specific tumor regions within brain MRI scans 

that AI model has flagged as abnormal tissue.
• Enhances traditional classification methods by 

adding localization.
Benefits of Grad-CAM 
• Provides insight into how the AI model “sees” the 

tumor, increasing transparency and trust in AI-based 
diagnostic tools.

• Helps clinicians understand the AI model's 
decision-making process by showing which parts of 
the MRI led to a tumor classification decision.



Sara Tehsin, Inzamam Mashood Nasir, Robertas Damasevicius. Interpreting CNN for Brain Tumor Classification Using XGrad-Cam. 
ARTIIS Workshops (1) 2024: 282-296



Sensitivity vs Conservation in Explainability
Sensitivity
• If I remove a feature, how much does prediction confidence for 

the class drop?

• Measures the true influence of each feature map.

Conservation
• Enforce that sum of feature contributions equals class score

• Prevent explanations from drifting away from decisions of CNN.

In XGrad-CAM:

• Sensitivity ensures relevance: only feature maps that truly 
affect the prediction are emphasized.

• Conservation ensures faithfulness: explanation accounts for 
optimal prediction score



X-Grad Cam Visualization Results



Intrinsic Explainability Using DaSAM (Disease 
and Spatial Attention Module)

• DASAM: A custom CNN architecture enhanced 
with two attention modules:

• Disease Attention Module (DAM): Filters 
out irrelevant areas, focusing only on tumor-
related regions.

• Spatial Attention Module (SAM): Learns 
which spatial features across channels are 
most discriminative for tumor types.

• Attention maps are generated during feature 
learning, not after prediction.

• Produces interpretable feature maps showing 
where the network is focusing

Tehsin, S., Nasir, I. M., Damaševičius, R., & Maskeliūnas, R. (2024). DaSAM: Disease and Spatial Attention Module-Based Explainable Model for Brain 
Tumor Detection. Big Data and Cognitive Computing, 8(9), 97. https://doi.org/10.3390/bdcc8090097



Intrinsic Explainability Using DaSAM (Disease 
and Spatial Attention Module)

• XGrad-CAM: Post-hoc explanation method.
• Works after prediction, backpropagating gradients to 

create a heatmap of influential regions.
• Strength: faithful attribution using sensitivity + 

conservation.
• Limitation: explanation is separate from model.

• DaSAM: Intrinsic explainability approach.
• Builds interpretability into the model itself.
• Strength: explanations are part of the feature 

extraction process, not an afterthought.
• Limitation: requires custom CNN design

Tehsin, S., Nasir, I. M., Damaševičius, R., & Maskeliūnas, R. (2024). DaSAM: Disease and Spatial Attention Module-Based Explainable Model for Brain 
Tumor Detection. Big Data and Cognitive Computing, 8(9), 97. https://doi.org/10.3390/bdcc8090097



State-Of-The-Art Deep Learning Models for 
Brain Tumors

• Vision Transformers (ViTs) – capture 
global context across image

• Mamba (State-Space Models) –long-
range dependency modeling with 
linear efficiency

• Mixture of Experts (MoE) – route data 
to specialized subnetworks



Explainable Transformers for Brain Tumor 
Detection

• Capture long-range dependencies through self-
attention.

• Patch Embedding: each image is divided into fixed-size 
patches and projected into a feature vector 

• Positional Encoding: restores spatial information 
where each patch belongs in  image.

• Each encoder layer has multi-head self-attention.
• Self-attention lets each patch attend to all others, 

capturing long-range dependencies 
• Multi-head design learns different types of relationships 
• Attention maps from self-attention can be visualized as 

explainability heatmaps overlaid on the MRI.
• Better understanding of both global tumor context and 

local fine-grained structures



The GATransformer

• Integrates Graph Attention Networks (GAT) with Transformers.
• GAT identifies relationships between neural network channels, i.e., which features 

matter most.
• The Transformer then computes inter-channel correlations across layers, enabling 

cross-layer reasoning.
• A channel attention module highlights critical channels and prunes redundant ones.
• Unlike black-box CNNs, pruning process produces explainable importance scores.

Tehsin, S., Nasir, I. M., & Damaševičius, R. (2025). GATransformer: A Graph Attention Network-Based Transformer Model to Generate 
Explainable Attentions for Brain Tumor Detection. Algorithms, 18(2), 89. https://doi.org/10.3390/a18020089



Explainability Workflow with GATransformer 

Tehsin, S., Nasir, I. M., & Damaševičius, R. (2025). GATransformer: A Graph Attention Network-Based Transformer Model to Generate 
Explainable Attentions for Brain Tumor Detection. Algorithms, 18(2), 89. https://doi.org/10.3390/a18020089





Mamba – State Space Model (SSM) for 
Long-Range Dependencies

• Why it matters:
• Transformers are computationally expensive O(n²), 

especially for 3D MRI volumes. 
• Mamba has linear-time architecture that can model 

long-range dependencies.
• How it applies to brain tumor recognition:

• More efficient processing of 3D MRI Images
• Real-time inference in settings with limited compute.

• Explainability: visualization of temporal dynamics and 
selective attention, how model prioritizes tumor versus 
healthy tissue across multiple MRI sequences.



Mamba – State Space Model (SSM) for 
Long-Range Dependencies

• Why it matters:
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especially for 3D MRI volumes. 
• Mamba has linear-time architecture that can model 
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NeuroMamba: 
Efficient State-
Space Model 
for Explainable 
Brain Tumor 
Segmentation

NeuroMamba: Efficient State-Space 
Model forExplainable Brain Tumor 
Segmentation. Submitted to IEEE 
International Conference on Computational 
Intelligence, Security, and Artificial 
Intelligence (IEEE-IntelliSecAI 2025)



NeuroMamba: 
Efficient State-
Space Model 
for Explainable 
Brain Tumor 
Segmentation

NeuroMamba: Efficient State-Space 
Model forExplainable Brain Tumor 
Segmentation. Submitted to IEEE 
International Conference on Computational 
Intelligence, Security, and Artificial 
Intelligence (IEEE-IntelliSecAI 2025)



Mixture of Experts (MoE) – Specialization at Scale

• Multiple “expert” subnetworks are trained, and 
a gating mechanism dynamically selects which 
experts to activate.

• Why it matters:
• Specialization: one expert might be 

specialized for gliomas, another for 
meningiomas, another for rare subtypes.

• Only a subset of experts is activated per 
sample, making the system more scalable 
and computationally efficient.



Mixture of Experts (MoE) – Specialization at Scale

• How it applies to brain tumor recognition:
• Reflect real-world radiology workflows: a 

glioma expert for infiltrative tumors, a 
pituitary expert for sellar lesions, etc.

• Incremental updates: new experts can be 
added for new tumor types without 
retraining whole system.

• Explainability:
• Support transparency: gating mechanism 

reveals which expert was responsible for 
the decision.











MoE with Attention-
Driven Multi-Scale 
Learning for Brain 
Tumor Classification

A. Hamza, R. Damaševičius. Multiscale MoE: A 
Mixture of Experts Framework with Attention-
Driven Multi-Scale Learning for Brain Tumor 
Classification. FedCSIS 2025.



MoE with Attention-
Driven Multi-Scale 
Learning for Brain 
Tumor Classification

A. Hamza, R. Damaševičius. Multiscale MoE: A 
Mixture of Experts Framework with Attention-
Driven Multi-Scale Learning for Brain Tumor 
Classification. FedCSIS 2025.



MoE with Attention-
Driven Multi-Scale 
Learning for Brain 
Tumor Classification

A. Hamza, R. Damaševičius. Multiscale MoE: A 
Mixture of Experts Framework with Attention-
Driven Multi-Scale Learning for Brain Tumor 
Classification. FedCSIS 2025.



MoE with Attention-
Driven Multi-Scale 
Learning for Brain 
Tumor Classification

A. Hamza, R. Damaševičius. Multiscale MoE: A 
Mixture of Experts Framework with Attention-
Driven Multi-Scale Learning for Brain Tumor 
Classification. FedCSIS 2025.



Survival Time 
Prediction

Survival Time Prediction: 

• Estimate remaining lifespan of a 

patient

Key Parameters in 

Prediction:

• Tumor Size: 2D size or 3D tumor 

volume

• Patient Age, Gender, etc.

• Tumor Grade (low-grade vs. 

high-grade glioma)

• Treatment status (Gross Total 

Resection, GTR)



Survival Time 
Prediction

AI Models Role: 

• parameters integrated into machine 

learning models, such as Cox 

Proportional Hazard (CoxPH) model, 

to predict survival time 

Importance:

• Optimizes Treatment: Tailors 

treatment strategies to patient’s 

prognosis.

• Improves Patient Care: Provides a 

personalized outlook on survival.

• Supports Decision-Making: Assists 

clinicians in creating effective 

treatment plans.



AI Workflow 
for Survival 

Time 
Prediction

Hussain, S.; Haider, S.; Maqsood, S.; Damaševičius, R.; Maskeliūnas, R.; Khan, M. ETISTP: An Enhanced Model for Brain Tumor Identification and Survival 
Time Prediction. Diagnostics 2023, 13, 1456. https://doi.org/10.3390/diagnostics13081456



AI Workflow 
for Survival 

Time 
Prediction

Hussain, S.; Haider, S.; Maqsood, S.; Damaševičius, R.; Maskeliūnas, R.; Khan, M. ETISTP: An Enhanced Model for Brain Tumor Identification and Survival 
Time Prediction. Diagnostics 2023, 13, 1456. https://doi.org/10.3390/diagnostics13081456



Future Directions in AI 
for Brain Cancer 
Research

• Multimodal Fusion: Integrating MRI, PET, 
histopathology, genomics, and clinical 
metadata into unified AI frameworks.

• Longitudinal & Predictive Modeling: 
Tracking tumor evolution to forecast 
progression and treatment response.

• Digital Twin Frameworks: Creating patient-
specific virtual twin models to personalize 
treatment planning.



Concluding Insights
• AI has matured from CNN-based local feature 

extractors to Transformers, MoE, and Mamba models 
enabling global reasoning and specialization.

• Explainability is non-negotiable: heatmaps, attention 
maps, and expert routing provide transparency & trust.

• Efficiency matters: linear-complexity models make 
large-scale 3D MRI analysis feasible.

• Multiscale and multimodal fusion ensures tumor 
features are captured across size, resolution, and 
modality.

• Clinical alignment: AI to mirror radiologist workflows 
and provide decision support in cooperation with 
humans (Human-In-The-Loop)



Thank You!
PhD Students (former and current):

• Dr. Sarmad Maqsood

• Dr. Olusola Abayomi-Alli

• Sara Tehsin

• N. Inzamam Mashood

• Ameer Hamza

• Irfan Abbas

Collaborators:

• Prof. Rytis Maskeliūnas

• Prof. Seifedine Kadry

• Prof. Tanzila Saba

• Dr. M. Attique Khan

• Dr. Mazin Abed Mohammed

• Dr. V. Rajinikanth



The future of brain tumor diagnosis isn’t just about 
smarter models - it’s about models we can trust
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