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SUVING LERINING

Al Applications in Brain Cancer
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Tissue & Tumor Classification JF__C Ao &
* Healthy vs malignant tumor tissues, e (O
* Low-grade vs high-grade gliomas.

Tumour Segmentation

* |dentify tumor boundaries from MRI scans.
Explainable Al (XAl)

* Visualize features and regions influencing Al decisions.

Survival Time Prediction

* Predict patient survival time based on tumor volume, age,
tumor type, etc.

* Provide data for personalized treatment plans.




Inputs & Outputs for Al Models in Tumor

Classification

Inputs:

* Medical Imaging Data: MRl scans (T1, T2, FLAIR)
offer detailed insights into brain's structure and
potential abnormalities.

* Clinical Data: Patient demographics (age, gender),
medical history, and tumor-related characteristics
(size, location).

* Histopathological Data: biopsy data or molecular
profiles.

Normal Brain MRI (Y3 to Y5) Benign tumor MRI
(Y10 to Y112) Malignant tumor MRI (Y17 to Y19)



Inputs & Outputs for Al Models in Tumor

Classification

Outputs:

* Tumor Type:
* Binary classification (e.g., glioma vs. non-glioma),
* Multi-class (low-grade vs. high-grade glioma), or
* Differentiate between specific subtypes of tumors
(e.g., astrocytoma, oligodendroglioma).
* Tumor Grade:

* Classification into grades (I-1V) based on
aggressiveness of tumor.

* Probability Scores:

* Confidence score that indicates likelihood of tumor
belonging to a certain class.

Y17 Y18

Normal Brain MRI (Y3 to Y5) Benign tumor MRI
(Y10 to Y112) Malignant tumor MRI (Y17 to Y19)



Recent Evolution of Deep Learning Models for Brain Tumor Recognition

Multi-Path CNN
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with explainable AI.




Brain MRI Feature Extraction using Deep
Convolutional Neural Network (CNN)

Hierarchical Feature Learning:
* Learn low-level (edges, textures, contrasts),
* mid-level (shapes, structures), and

* high-level (tumor regions, anatomical features)
representations from MRI scans.

Extract Spatial and Structural Features:

* Fine-grained texture features that differentiate
between healthy and abnormal brain tissues.




Typical Workflow of Brain Tumor Classification
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Kurdi, S.Z.; Ali, M.H.; Jaber, M.M.; Saba, T.; Rehman, A.; Damasevicius, R. Brain Tumor Classification Using Meta-Heuristic Optimized Convolutional
Neural Networks. J. Pers. Med. 2023, 13, 181. https://doi.org/10.3390/jpm13020181




Brain Tumor Localization by Image
Segmentation

Partitioning a brain image into multiple regions to isolate
and identify specific Areas of Interest (Aol)

» Better understanding of brain structures

» Accurate diagnosis & treatment planning

* Monitoring disease progression

Tumor heterogeneity:

« Brain tumors vary greatly in shape, size, and appearance
 Variability makes segmentation challenging

Manual segmentation challenges:

« Labor-intensive and time-consuming, inconsistent results
Al solutions:

« Automate tumor segmentation

* |dentifying tumor boundaries




Inputs & Outputs for Al Models in Brain

Tumor Segmentation

Inputs for Al Models in Brain Tumor
Segmentation

* Medical Imaging Data: MRI scans are the most
common type of input data used for brain tumor
segmentation.

* Preprocessing Information: enhance contrast,
remove noise, and standardize the imaging
format, which ensures that the Al model can
effectively interpret the images.

* Clinical Information (Optional): patient’s age,
medical history, or previous treatment outcomes

.



Inputs & Outputs for Al Models in Brain
Tumor Segmentation

Outputs of Al Models in Brain Tumor

Segmentation

* Segmented Tumor Regions: A colored
segmentation map that separates tumor ,
from surrounding healthy tissue. :

* Quantitative Metrics: tumor's size, shape,

and volume, vital for diagnosis, disease
monitoring and treatment planning.



Example: Brain Tumor Localization
using Fuzzy Edge Detection

(b)

1 brain image. (a) Source image, (b) Tumor segmented image, and (c) Tumor extraction

Objective: Identify and extract tumor regions from
brain MRI scans.

Fuzzy Edge Detection Method

* Fuzzy Logic: handle uncertainty and imprecision
in identifying boundaries between tumor and
healthy tissues.

* Edge Detection: Locates tumor edges in MRI scans.

Magsood, S., Damasevicius, R., Shah, F.M. (2021). An Efficient Approach for the Detection of Brain Tumor Using Fuzzy Logic and U-NET CNN Classification. ICCSA
2021. https://doi.org/10.1007/978-3-030-86976-2_8




Example: Brain Tumor Localization
using Fuzzy Edge Detection

(b)

1 brain image. (a) Source image, (b) Tumor segmented image, and (c) Tumor extraction

Steps in Fuzzy Edge Detection for Tumor Segmentation
 Contrast enhancement to improve image clarity.

Fuzzy Rules to detect edges in image.

3x3 Convolution Mask to extract neighborhood of pixels.

Fuzzy Inference converts pixels into fuzzy domain to
detect edges.

Fuzzy Edge Patterns identify edge shapes in tumor region.

Magsood, S., Damasevicius, R., Shah, F.M. (2021). An Efficient Approach for the Detection of Brain Tumor Using Fuzzy Logic and U-NET CNN Classification. ICCSA
2021. https://doi.org/10.1007/978-3-030-86976-2_8




Integration of Classification and Segmentation Tasks
for Multimodal Analysis Using Al Models

Multimodal analysis

* Various types of input data (MRl modalities - T1-
weighted, T2-weighted, and FLAIR) to improve both
segmentation and classification accuracy.

* Segmentation identifies and extracts the tumor
region from the MRI scan.

* Classification determines type and grade of the
tumor based on extracted features from
segmented regions.

Inputs for Multimodal Analysis

 Multiple MRI Modalities (T1, T2, FLAIR) provide
detailed structural views of brain and tumor.

* Clinical Data: Patient demographics, medical
history, and genetic information (optional) can be
incorporated to refine Al predictions.




Integration of Classification and Segmentation Tasks
for Multimodal Analysis Using Al Models

Deep Learning Models

* CNNs: for both segmentation (to identify
tumor boundaries) and classification (to
categorize tumor types and grades).

* Transfer Learning: Pre-trained models are
fine-tuned on medical datasets, reducing
training time and improving accuracy.

* Fusion Techniques: Fuse features from
different modalities for a more robust and
comprehensive analysis.




Integration of Classification and Segmentation Tasks
for Multimodal Analysis Using Al Models

Outputs:

* Tumor Segmentation Maps: The Al model
generates precise segmentation maps that
highlight the tumor’s location and extent
within the brain.

* Tumor Classification: Outputs include tumor
type (e.g., glioma vs. meningioma) and tumor
grade (I-1V), which are crucial for determining
treatment approaches.

* Quantitative Metrics: Models output metrics
like tumor size and volume, which are
essential for tracking progression.




Multimodal MRI Image Analysis and Feature Fusion Workflow
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Khan, M. A., Khan, A., Alhaisoni, M., Algahtani, A., Alsubai, S., Alharbi, M., Malik, N. A., & Damasevicius, R. (2022). Multimodal brain tumor detection and classification using deep
saliency map and improved dragonfly optimization algorithm. International Journal of Imaging Systems and Technology (Vol. 33, Issue 2, pp. 572-587).



Brain Image Segmentation Results

Original Images (First Column):

« Raw brain MRI scans.

 Limited contrast and noisy, blurry tumor boundaries.
Enhanced Images (Second Column):

» Contrast-enhanced images for improved visibility of tumor
» Key features of the tumor become more distinguishable.
Segmented Tumor Region (Third Column):

* Al model isolates and segments the tumor region.

* Provides visualization of tumor size and shape for diagnosis.
Tumor Localization (Fourth Column):

 Final result with tumor boundaries outlined in red.

» Accurately pinpoints tumor’s position within the brain.

Khan, M. A., Khan, A., Alhaisoni, M., Algahtani, A., Alsubai, S., Alharbi, M., Malik, N. A., & Damasevicius, R. (2022). Multimodal brain tumor detection and classification using deep
saliency map and improved dragonfly optimization algorithm. /nternational Journal of Imaging Systems and Technology (Vol. 33, Issue 2, pp. 572-587).




Regulations for Deploying Al in Brain Oncology

EU MDR (European Union Medical Device
Regulation)

* Governs medical devices and diagnostic f\’?f;é&:?&%ﬂg
systems in the EU, including Al-based
software for medical purposes. EU MDR FDA GDPR
 Requires ClInICé!l eV|.d.ence, safgty validation, Q E\(,tilcijgirc‘:?é 9 S a i
and often explainability of algorithms before
approval. @ Safety @Eﬁecﬁveness EO Consent
* Al d[agnostlc tools classified as meqllcal @ c: varking il Efﬁzrt]:uon
devices and must undergo conformity

assessment and CE marking.



Regula’tions for Deploying Al in Brain Oncology

FDA (U.S. Food and Drug Administration)

* Evaluates safety, effectiveness,
generalizability, and risk management of
algorithms.

 Software as a Medical Device (SaMD),
covering adaptive AI/ML models that Clinical " .
continuously learn after deployment. Q S 0 sarer Q e

SAFE & TRUSTWORTHY
Al IN BRAIN ONCOLOGY

EU MDR FDA GDPR

@ Safety @Effectiveness EO Consent

. — . Right to
0 CE Marking Risk Explanation



Regula’tions for Deploying Al in Brain Oncology

GDPR (General Data Protection Regulation)
* Includes the “right to explanation”: patients

can demand to know how algorithmic SAFE & TRUSTWORTHY
g . Al IN BRAIN ONCOLOGY
decisions about their health were made.
* Requires data anonymization, and consent EUMOR RDA GDER
management in Al-driven medical research. Q E\(Itil(ijgir::?é °Safety a i

@ Safety @Effectiveness EO Consent

. — . Right to
0 CE Marking Risk Explanation



Black-box Nature of Al Models and Need for
XAl (eXplainable Al)

Black-box Al models lack transparency and interpretability
in their decision-making processes.

* Understand how Al models arrive at predictions.
* Lack of transparency limits adoption in clinical settings.
Challenges of Black-box Al in Healthcare

* Trust: Cannot rely on Al models if cannot understand or
validate results.

* Accountability: Difficult to assign responsibility in cases
of errors or adverse outcomes.

* Regulatory Barriers: Proving safety of Al models for
regulatory approval.

Kazimir Malevich, Black Square, 1915



Why Al Explainability Matters?

* Transparent reasoning to integrate Al outputs

into diagnostic workflows.
* Reduce risk of misdiagnosis and ensures @ TRUST J

accountability in life-critical decisions for
patient safety.

* Explain predictions across MRI image
modalities.

PATIENT

&
o \/

CLINICIAN

* Regulatory compliance to satisfy EU MDR &
GDPR requirements such as for informed
consent.




Human-in-the-Loop in Brain Tumor Recognition

Collaborative decision-making: Al suggests,
clinicians validate, adjust, or override outputs.

Human oversight reduces risks of false
positives/negatives in diagnosis and
segmentation.

Expert corrections to retrain and fine-tune Al
models in continuous feedback loop.

Human experts identify spurious correlations or
clinically implausible features flagged by Al.

Meets regulatory requirements by ensuring Al is
a support tool, not an autonomous diagnostic
authority.

Clinician '
'f?i;:::‘ l h

Feedback
Loop

dy

SN

Patient
@
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Two Ways to Explain: Post-Hoc vs Intrinsic

Post-Hoc Explainability

* Explanation generated after prediction
* Works with any pre-trained CNN

* Strength: flexible, model-agnostic

* Limitation: separate from training,
explanations are an add-on

Trained Model

!

Post-Hoc
Explanation

S5

Model +
Explanation

!
0O

Intrinsic
Explanation



Two Ways to Explain: Post-Hoc vs Intrinsic

Intrinsic Explainability

* Explanation built into the model
architecture

* Strength: explanations are integrated &
faithful

* Limitation: requires custom CNN design

Trained Model

!

Post-Hoc
Explanation

S5

Model +
Explanation

!
0O

Intrinsic
Explanation



Post-hoc Explanability using Grad-CAM

Grad-CAM (Gradient-weighted Class Activation
Mapping)

* Highlight important regions in an image contributing to
a model’s prediction.

« Computes gradients of the class prediction (e.g.,
tumor) concerning feature maps in the final
convolutional layers of the CNN.

* Produces a heatmap that overlays on the brain MRI to
indicate areas with highest influence on the decision.

* Highlights most significant regions in the scan, helping
to localize the tumor.

Grade

Grade 11




Localization of Tumor using Grad-CAM

Application of Grad-CAM in Brain Cancer '

* Shows specific tumor regions within brain MRl scans
that Al model has flagged as abnormal tissue.

* Enhances traditional classification methods by
adding localization.

Benefits of Grad-CAM

* Provides insight into how the Al model “sees” the
tumor, increasing transparency and trust in Al-based
diagnostic tools.

Grade 11

* Helps clinicians understand the Al model's
decision-making process by showing which parts of
the MRI led to a tumor classification decision.




XGrad-CAM Workflow for Brain Tumor Recognition

4 N\
Prediction Preprocessing CNN Model
| s ¢ Glioma / Meningioma
' MRI Input Preprocessing Fully Connected Pituitary / Healthy
o Layer Label + confidence score
Exp|a|nab|||ty Gradient RelLU + l

Backpropagation Upsampling

B -3

CNN Feature Sensitivity + Heatmap F—
Maps Conservation Overlayon Ml . Clinician ;
) g weighting Interpretation

\. 4

Visual explanation

Sara Tehsin, Inzamam Mashood Nasir, Robertas Damasevicius. Interpreting CNN for Brain Tumor Classification Using XGrad-Cam.
ARTIIS Workshops (1) 2024: 282-296




Sensitivity vs Conservation in Explainability

Sensitivity

* [fl remove a feature, how much does prediction confidence for

the class drop? Sensitivity Conservation
* Measures the true influence of each feature map.
" F % F —
Conservation | 1
Class score

* Enforce that sum of feature contributions equals class score

* Prevent explanations from drifting away from decisions of CNN.
. drop in score when
In XGrad-CAM: feature map removed -

* Sensitivity ensures relevance: only feature maps that truly
affect the prediction are emphasized. all contributions sum to class score

* Conservation ensures faithfulness: explanation accounts for
optimal prediction score



-Grad Cam Visualization Results
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Intrinsic Explainability Using DaSAM (Disease
and Spatial Attention Module)

A

* DASAM: A custom CNN architecture enhanced AvgPooling2D
with two attention modules:

 Disease Attention Module (DAM): Filters
out irrelevant areas, focusing only on tumor-
related regions.

* Spatial Attention Module (SAM): Learns
which spatial features across channels are
most discriminative for tumor types.

—>  Input [ » Add
MaxPooling2D

Y

Conv2D

Add

A

A

<— Sigmoid Fully-Connected

* Attention maps are generated during feature
learning, not after prediction.

|Fu|l_v-('onncclcd }4—[ AvgPooling2D }4—{ Input }"hl MaxPooling2D I'—’-[ Fully-Connected [
|

: :
* Produces interpretable feature maps showing ; [
. . “ully-Connectec Sigmoid ﬁ‘—t‘igmui( | Fully-Connected
where the network is focusing Lmst oot | Sphid |——— - Sigmoid Je—{ Fully-Comected |

Tehsin, S., Nasir, I. M., Damasevicius, R., & Maskeliunas, R. (2024). DaSAM: Disease and Spatial Attention Module-Based Explainable Model for Brain
Tumor Detection. Big Data and Cognitive Computing, 8(9), 97. https://doi.org/10.3390/bdcc8090097




Intrinsic Explainability Using DaSAM (Disease
and Spatial Attention Module)

* XGrad-CAM.: Post-hoc explanation method.

* Works after prediction, backpropagating gradients to
create a heatmap of influential regions.

* Strength: faithful attribution using sensitivity +

POST-HOC
EXPLAINABILITY

INTRINSIC
EXPLAINABILITY

XGrad-CAM
conservation.
* Limitation: explanation is separate from model. @ N
« DaSAM: Intrinsic explainability approach. Any pre- Heatmap Built-in Attention
y trained CNN overlay attention maps
* Builds interpretability into the model itself. ° 0 Q Q
* Strength: explanations are part of the feature St St Built-in Gustor
extraction process, not an afterthought. | process process attention CNN

* Limitation: requires custom CNN design

Tehsin, S., Nasir, I. M., Damasevicius, R., & Maskeliunas, R. (2024). DaSAM: Disease and Spatial Attention Module-Based Explainable Model for Brain
Tumor Detection. Big Data and Cognitive Computing, 8(9), 97. https://doi.org/10.3390/bdcc8090097




State-Of-The-Art Deep Learning Models for
Brain Tumors

* Vision Transformers (ViTs) — capture i
global context across image EI]

[N
f‘H—w—\\—w—t
)L |

« Mamba (State-Space Models) -long-
range dependency modeling with
linear efficiency

* Mixture of Experts (MoE) - route data
to specialized subnetworks




Explainable Transformers for Brain Tumor

Detection

Capture long-range dependencies through self-
attention.

Patch Embedding: each image is divided into fixed-size
patches and projected into a feature vector

Positional Encoding: restores spatial information
where each patch belongs in image.

Each encoder layer has multi-head self-attention.

Self-attention lets each patch attend to all others,
capturing long-range dependencies

Multi-head design learns different types of relationships

Attention maps from self-attention can be visualized as
explainability heatmaps overlaid on the MRI.

Better understanding of both global tumor context and
local fine-grained structures

Image
Input

-

Patch
Embedding

Encoder

iy

Pcsition Embedding

Output
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Layer Attention
The GATransformer T ST o T
Layer Attention
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* Integrates Graph Attention Networks (GAT) with Transformers.

* GAT identifies relationships between neural network channels, i.e., which features
matter most.

* The Transformer then computes inter-channel correlations across layers, enabling
cross-layer reasoning.

* A channel attention module highlights critical channels and prunes redundant ones.

* Unlike black-box CNNs, pruning process produces explainable importance scores.

Tehsin, S., Nasir, |. M., & Damasevicius, R. (2025). GATransformer: A Graph Attention Network-Based Transformer Model to Generate
Explainable Attentions for Brain Tumor Detection. Algorithms, 18(2), 89. https://doi.org/10.3390/a18020089




Explainability Workflow with GATransformer
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Tehsin, S., Nasir, |. M., & Damasevicius, R. (2025). GATransformer: A Graph Attention Network-Based Transformer Model to Generate
Explainable Attentions for Brain Tumor Detection. Algorithms, 18(2), 89. https://doi.org/10.3390/a18020089
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Mamba - State Space Model (SSM) for
Long-Range Dependencies

* Why it matters:

« Transformers are computationally expensive O(n?),
especially for 3D MRI volumes.

* Mamba has linear-time architecture that can model
long-range dependencies.

* How it applies to brain tumor recognition:
* More efficient processing of 3D MRI Images

* Real-time inference in settings with limited compute.

* Explainability: visualization of temporal dynamics and
selective attention, how model prioritizes tumor versus
healthy tissue across multiple MRI sequences.

Computation path

Linear
projection

Sequence
transforma-
tion

@ Nonlinearity

Computation
path

SSM

Conv

Mamba

Computation path

communication

SIS S R SR " S g IS g R S T w e T S S e " " — |
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Communication path



Mamba - State Space Model (SSM) for
Long-Range Dependencies

* Why it matters:

« Transformers are computationally expensive O(n?),
especially for 3D MRI volumes.

* Mamba has linear-time architecture that can model
long-range dependencies.

* How it applies to brain tumor recognition:
* More efficient processing of 3D MRI Images

* Real-time inference in settings with limited compute.

* Explainability: visualization of temporal dynamics and
selective attention, how model prioritizes tumor versus
healthy tissue across multiple MRI sequences.

Computation path

Linear
projection

Sequence
transforma-
tion

@ Nonlinearity

Computation
path

SSM

Conv

Mamba

Computation path

communication
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Mamba vs Transformer: Modeling Long-
Range Dependencies

Transformer (Self-Attention) Mamba (State Space Model)
State
State
State
Quadratic cost (O(n?) Linear cost (O(n)
» Captures global dependencies  Efficient, scalable
« Computationally expensive, » Long-range context preserved

memory heavy » Selective propagation —

interpretable feature trace
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NeuroMamba: Efficient State-Space
Model forExplainable Brain Tumor
Segmentation. Submitted to /EEE
International Conference on Computational
Intelligence, Security, and Artificial
Intelligence (IEEE-IntelliSecAl 2025)
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NeuroMamba:
Efficient State-
Space Model
for Explainable
Brain Tumor
Segmentation

NeuroMamba: Efficient State-Space

Model forExplainable Brain Tumor
Segmentation. Submitted to /EEE

International Conference on Computational

Intelligence, Security, and Artificial
Intelligence (IEEE-IntelliSecAl 2025)
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Mixture of Experts (MoE) — Specialization at Scale

* Multiple “expert” subnetworks are trained, and
a gating mechanism dynamically selects which
experts to activate. e .I ................... ‘

* Why it matters:

* Specialization: one expert might be
specialized for gliomas, another for
meningiomas, another for rare subtypes. *

* Only a subset of experts is activated per
sample, making the system more scalable . .
and computationally efficient. l ------------------ '




Mixture of Experts (MoE) — Specialization at Scale

* How it applies to brain tumor recognition:

* Reflect real-world radiology workflows: a
glioma expert for infiltrative tumors, a e .I ................... |
pituitary expert for sellar lesions, etc. : !
* Incremental updates: new experts can be
added for new tumor types without
retraining whole system. !
* Explainability: '
* Support transparency: gating mechanism :
reveals which expert was responsible for l ------------------ '
the decision.
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Survival Time
Prediction

_______________________________

—— Kaplan Meier Estimate

Survival Analysis

80% probability of surviving

/ beyond 22 months

50% probability of surviving
beyond 65 months

20 0 40 50 &0 70
nnnnnnnn

Survival Time Prediction:

« Estimate remaining lifespan of a
patient

Key Parameters in
Prediction:

 Tumor Size: 2D size or 3D tumor
volume

- Patient Age, Gender, etc.

 Tumor Grade (low-grade vs.
high-grade glioma)

* Treatment status (Gross Total
Resection, GTR)



. . Al Models Role:
SU rVIVal TI me « parameters integrated into machine

1~ti learning models, such as Cox
Pred ICtIOn Proportional Hazard (CoxPH) model,

to predict survival time
Importance:

s . 1A lusi * Optimizes Treatment: Tailors
urviva naiysis treatment strategies to patient’s

/ beyond 22 months prOg nOSiS.

TP ——— * Improves Patient Care: Provides a
evond 6 months personalized outlook on survival.

« Supports Decision-Making: Assists
. clinicians in creating effective
: s e . 5 . treatment plans.
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Input Pre Processing Tumor Identification Compute Tumor Size Grade Classification
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Future Directions in Al
for Brain Cancer
Research

* Multimodal Fusion: Integrating MRI, PET,
histopathology, genomics, and clinical
metadata into unified Al frameworks.

* Longitudinal & Predictive Modeling:
Tracking tumor evolution to forecast
progression and treatment response.

* Digital Twin Frameworks: Creating patient-
specific virtual twin models to personalize
treatment planning.




Concluding Insights

Al has matured from CNN-based local feature
extractors to Transformers, MoE, and Mamba models
enabling global reasoning and specialization.

Explainability is non-negotiable: heatmaps, attention
maps, and expert routing provide transparency & trust.

Efficiency matters: linear-complexity models make
large-scale 3D MRI analysis feasible.

Multiscale and multimodal fusion ensures tumor
features are captured across size, resolution, and
modality.

Clinical alignment: Al to mirror radiologist workflows
and provide decision support in cooperation with
humans (Human-In-The-Loop)
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The future of brain tumor diagnosis isn’t just about
smarter models - it's about models we can trust
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