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Motivation

e Cyber threats growing in complexity &
frequency

e Traditional IDS struggle with novel attacks

e Need: adaptive & intelligent intrusion
detection



Problem

e Supervised models depend on large labeled
datasets

e Assume static distributions
e Fail against new attack types

e Goal: adaptive, robust, and generalizable IDS



Our Contribution

e Explicit RL formulation: state, action, reward
e Hybrid training strategy: supervised + RL
signals

® Extensive evaluation on CICIDS2017 dataset



Dataset (CICIDS2017)

e 2.8M records (83% benign,
17% attacks)

e Attack types: DoS, PortScan,
DDoS, Web Attacks, Bot, etc.

e Class imbalance challenge = rse
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Fig. 1. Distribution of classes in the CICIDS2017 dataset.



Q-ID Method

State = flow feature vector

Action = classify as benign
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Architecture
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e Softmax only for supervised loss

Fig. 3. Architecture of the proposed Q-network used by the RL module,



Results

Accuracy = 99.3%

Macro F1 = 0.982, Recall =
0.994

Outperforms FT-Transformer,
TabNet, CatBoost, XGBoost,
LightGBM

Low latency (0.07 ms/sample)
— real-time feasible
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Fig. 4. Normalized reward versus training episodes/steps. A sustained upward
trend indicates that the learned policy increasingly selects correct actions
across classes. even after the supervised loss has plateaued.



Ablation Study

® Removing TD loss — biggest drop in
performance

e Class weighting & exploration critical for rare
attacks

e Gating-residual helps stability
e Fach component contributes to robustness



Ablation Study

TABLE |

COMPARISON WITH MODERN BASELINES ON THE CICIDS2017 EVALUATION SPLIT. BEST RESULTS PER COLUMN ARE IN BOLD. “LATENCY" IS
SINGLE-SAMPLE INFERENCE TIME (MEDIAN)—DEEP MODELS ON A T4-CLASS GPU: TREE ENSEMBLES ON CPU (LOWER IS BETTER).

Model Accuracy (%) | Macro F1 | Macro Recall | Macro Precision | Macro AUROC | Macro PR-AUC | Latency (ms)
DRL (ours) 99.3 0.982 0.994 0.991 0.999 0.997 0.07
FT-Transformer 99.0 0.976 0.986 0.975 0.998 0.993 0.35
TabNet 98.8 0.972 0.983 0.971 0.997 0.991 0.60
CatBoost 98.7 0971 0978 0972 0.998 0.990 0.12
XGBoost 98.5 0.968 0.975 0.970 0.997 0.988 0.18
LightGBM 98.6 0.969 0974 0971 0.997 0.989 0.08
ResMLP (5x128) 98.3 0.965 0972 0.966 0.996 0.986 0.28
Random Forest 96.1 0.967 0.969 0.961 0.990 0.972 0.15
SVM (RBF) 85.0 0.830 0.852 0.851 0910 0.740 1.20
KNN (k=5) 98.4 0.960 0.964 0.958 0.992 0.979 0.90




Conclusion

e DRL framework: adaptive IDS with high
accuracy

e Handles imbalance & unseen attacks better
than baselines

e Suitable for real-time network defense

e Future: model compression, explainability,
continual learning



